
NASA-CR-19084I

/ ,

/

Part II

Ground Terminal Expert

(GTEX)

/, \ J

i

pn
r....
c_0 p,n
_-_ _ o,

i '-- ,-i

o, c- ,-.,

N
pP_

0

Expert System Diagnostics
for a 30/20

Gigahertz Satellite Transponder

A final report summarizing research

on

Contract NAG3-923

...j r_

Z _:,t"

tlJ JJ 0 0 ,'_
)..- G. O'_ _. *

ec" U.- C
_ i---- _ 0

Ct cn I-- _..

,,-. 0. J--* .J ,,_

•.I" , _J_ I.L

_._ _-- _ 0

completed at

The Univerisity of Akron

Electrical Engineering Department

Akron, Ohio 44325

for

NASA Lewis Research Center

21000 BrookPark Road

Cleveland, Ohio 44135

submitted by

Dr. John Durkin Associate Professor of Electrical Engineering

Richard Schlegelmilch Masters Student in Electrical Engineering

Donald Tallo Masters Student in Electrical Engineering

March 31, 1992



ABSTRACT

A research effort was undertaken to investigate how expert system technology

could be applied to a satellite communications system. The focus of the expert

system is the satellite earth station. A proof of concept expert system called the

Ground Terminal Expert (GTEX) was developed at The University of Akron in
collaboration with NASA Lewis Research Center.

With the increasing demand for satellite earth stations, maintenance is becoming

a vital issue. Vendors of such systems will be looking for cost effective means of

maintaining such systems. The objective of GTEX is to aid in diagnosing of

faults occurring with the digital earth station.

GTEX was developed on a personal computer using the Automated Reasoning

Tool for Information Management (ART-IM) developed by Inference

Corporation. Developed for the Phase II digital earth station, GTEX is a part of

the Systems Integration Test and Evaluation (SITE) facility located at NASA
Lewis Research Center.



TABLE OF CONTENTS

PAGE

CHAPTER

Io STATEMENT OF PROBLEM ................................................................... 1

Background ............................................................................................. 1

Characteristis of the digital earth station .............................................. 1

Issues of the digital earth station ........................................................... 2

Expert system solution ........................................................................... 3

The development environment ............................................................. 3

Overview of GTEX .................................................................................. 5

II. GTEX ARCHITECTURE ........................................................................... 6

Introduction ............................................................................................. 6

Knowledge base ...................................................................................... 6

Query system .......................................................................................... 7

Control system ........................................................................................ 7

Display system ........................................................................................ 8

III. SYSTEM OPERATION .............................................................................. 9

Introduction ............................................................................................. 9

Assumptions ............................................................................................ 9

Fault verification ..................................................................................... 10

Fault isolation .......................................................................................... 11

Fault recovery recommendation ............................................................ 12

IV. IMPLEMENTATION ................................................................................ 13

Introduction ............................................................................................. 13

Message system ....................................................................................... 13

Knowledge base ...................................................................................... 15

Query system .......................................................................................... 21

Control system ........................................................................................ 25

Display system ........................................................................................ 28

Vo OBJECT-ORIENTED PROGRAMMING ................................................. 37

Introduction ............................................................................................. 37

Characteristics of an object ..................................................................... 37

Object-oriented techniques in GTEX ..................................................... 39

Extending the object capability of GTEX .............................................. 46

The C-language naming convention ..................................................... 48

VI. SUMMARY .................................................................................................. 49

BIBLIOGRAPHY ................................................................................................ 50



ii

APPENDIX .......................................................................................................... 52

MODIFYING GTEX ................................................................................... 53

FILE DESCRIPTIONS ................................................................................ 58



CHAPTER I

STATEMENT OF PROBLEM

1.1 Background

Extensive development of satellite communications is currently under way at the

NASA Lewis Research Center. Using proof-of-concept subsystems and

components, (IF switch matrices, solid-state amplifiers, traveling-wave tube,

high-power amplifiers and low-noise receivers) a Ka-band satellite

communication network simulation known as the Satellite Integration, Test and

Evaluation (SITE) facility has been developed. This facility allows modulated

data to be used to characterize the effect of microwave components through a

Time Division Multiple Access (TDMA) burst terminal and an earth station
network.

In 1989, the NASA Lewis Research Center initiated a grant with the University

of Akron to investigate the feasibility of applying expert system technology to

satellite communications. The SITE test bed provides the satellite

communication benchmarks. The Ground Terminal Expert (GTEX) system was

developed as a demonstrafional prototype. GTEX addresses faults associated

with the digital earth station.

1.2 Characteristics of the Digital Earth Station

The digital earth station is a major and one of the more complex elements of the

satellite communications network. The earth station is responsible for acquiring

satellite and network timing, maintaining synchronization of the network, and

transmitting and receiving data from other earth stations in the network. Each

SITE earth station, shown in Figure 1.1, consists of a system clock, timing and

control circuits for both transmitting and receiving, first-in, first-out

memories(FIFO), individual user docks and associated control circuits,

command processor microcomputer, a user interface controller, and a serial

minimum-shift(SMSK) burst modulator and demodulator (Ivanic, et al. 1989).



In the SITE earth station, users are simulated by a bit-error-rate test set

consisting of a data generator (transmitting user) and a data checker (receiving

user). A controlling computer creates realistic traffic patterns with users of

varying data rates entering and leaving the system. A bit-error-rate (BER)

figure, a performance measure of the overall satellite system, is used to

determine the degradation of data. By knowing the degree of degradation the

end-user can decide to either tolerate it or make necessary compensations
(Shalkhauser 1988).

Phase II - Digital Ground Terminal

DG--_::!::::_::FIFO1iii::::i::ii_-_l

Ground Terminal
User Interface

Contr_

DC1

DC2

DC3

 iiiiiiiiiiiiiii!iiiiii !iii!i!i!i!]

Figure 1.1 -- SITE digital earth station

1.3 Issues Regarding the Digital Earth Station

The SITE earth station is limited to the NASA Lewis user community. One earth

station having similar network characteristics as those of the SITE station, and a

vast user community, is the very small aperture terminal (VSAT). "VSAT

represents technology innovation that provides reliable transmission of digital

information for data, voice and even video by satellite using comparatively

small antennas." (Levenburg 1991)

The most difficult problem faced by the designers of the personal VSAT is the

realization of acceptable performance levels while achieving a high level of

subsystem integration at low cost (Tsang et al. 1991). One expert estimates the

cost to operate "a hypothetical 100-node VSAT network per month at roughly



3

$22,050,which include $6,500 for maintenance of such a system." (Case 1990)

Case further states, "For vendors to be successful, they will have to provide the

application software, network management and maintenance service and

hardware." He continues by saying, "The hardware part of the package will

become almost a commodity." Therefore, "The turnkey service and the

applications software will become the key factors used by companies to select a

vendor." Vendors will be looking for methods to maintain these stations in the

most cost effective means possible.

1.4 Expert System Solution

One method of reducing maintenance cost is by minimizing the time required by

technicians to diagnose and maintain the earth station. This time could be

minimized by having an expert system focus the diagnostic steps, eliminating

unnecessary procedures.

GTEX reduces the time spent diagnosing the faults. A technician is not using

costly time searching reference manuals for specifications and procedures

contain within the knowledge base of GTEX. GTEX guides the procedures

necessary to diagnose the fault. Since GTEX contains information about all

faults, the probability of not diagnosing the correct fault is minimal. Less time is

spent diagnosing errors, which results in less down-time of the communication

link. These time saving procedures results in a cost savings for both the

consumer and service companies.

The main concern with any digital earth station is the errors associated with the

transmitting and receiving of user data. Since the SITE earth station displays

this characteristic, the GTEX prototype focused on diagnosing such errors.

1.5 The Development Environment

GTEX was developed using the Automated Reasoning Tool for Information

Management(ART-IM) by Inference Corporation. ART-IM is a C-based toolkit

for the development of rule-based, or frame-based, expert systems (ART-IM

1991). GTEX was developed on a personal computer(PC) running under MS-
DOS.

ART-IM supports three programming styles; procedural, rule-based and object-

oriented. The procedural language supported by ART-IM provides basic

function calls, and allows simple interactions and conditionals to be performed.

The rule-based structure uses the rule as the fundamental unit. Reacting to

changes in the working memory, the rule can then fire or execute based on the



4

dynamic order of the changes that occur. Objects in ART-IM are represented by

a schema. Control of an object is managed by sending a message to that object.

An object reacts to a message by searching itself for an appropriate method and

executing the actions associated with that method.

The ART-IM procedural language can be extended using the 'C' language. User

functions can be written in 'C' and included with the ART-IM program that can

be used like any other ART-IM function. Since functions defined in 'C' are

complied versus interpreted, the result is faster execution. This capability of

ART-IM was important in the development of the user-interface discussed in this

report.

The hardware requirements of GTEX include:

• IBM/AT, 386, 486 or compatible computer

• Minimum of 2 Megabytes of RAM

• Hard-disk with at least I Megabyte available

• VGA color monitor

• Microsoft compatible mouse

_r

Query System I

System Control

Knowledge Base

l I End-User :)

)¢

l
Display System ............

Figure 1.2 -- GTEX architecture



1.6 Overview of GTEX

The GTEX system, shown in Figure 1.2 is responsible for the following:

• Fault Verification

• Fault Isolation

• Fault Recovery Recommendation

The diagnostic procedure begins by determining the initial configuration of the

system. Information about each user channel regarding transmit and receive

data channels, bit error rate (BER) and data rate is gathered. General status

information about the SITE ground terminal is also obtained. Each user data
channel BER measurement is verified to determine if the tolerance limit has been

exceeded. If tolerance limits are exceeded, the end-user is informed of the

discrepancy and isolation of the fault begins.

Three levels of isolation are performed. The initial stage of isolation determines

which side, transmit or receive, of the user channel is causing the error. Isolation

then continues to determine which of the corresponding subsystems is in error.

Finally the corresponding circuit board is isolated. Once the fault has been

isolated and end-user informed, GTEX can be requested to recommend an

appropriate action.



CHAPTER lI

GTEX ARCHITECTURE

2.1 Introduction

The GTEX architecture, shown in Figure 1.2, is comprised of four major systems;

Knowledge base, Query, Control, and Display systems. The role of each system
is discussed.

2.2 Knowledge Base

The essential difference between an expert system and a conventional program

is that the expert system processes' knowledge while the conventional program

processes' data. One of the primary components of any expert system is the

knowledge base. The knowledge base is the collection of expert knowledge

about a given domain. The GTEX knowledge base is a collection of rules and

objects associated with diagnosing the digital earth station.

Rules represent the operational knowledge elements. They describe actions that

should occur based on conditions of the working memory. Rules also express

heuristics of the given domain. The rule construction consists of left and right -

hand side elements. A typical rule from GTEX, is shown in its natural langauge

form in Figure 2.1.

RULE

IF

AND

THEN

Ground Terminal Isolated

The Transponder is not Connected
The Attenutators are not Connected

The Ground Terminal is Isolated

Figure 2.1 - GTEX rule in natural language format

Objects allow a structure to be defined for a complex domain. Objects provide

support for data abstraction, knowledge encapsulation, reusability, and

extensibility. An overview of object-oriented programming will be presented in

Chapter 5.



7

Individually, each representation technique has many advantages over

traditional programming techniques. Used together their advantages are further

enhanced. Augmenting rules with objects allows further refinement of

knowledge than with rules alone. Objects allow the knowledge to be structured,

exploiting data abstraction and encapsulation principles in the application.

Using objects with rules provides a more powerful paradigm for reasoning

about objects. (Stipp 1990)

2.3 Query system

The query system is responsible for obtaining data upon request from the

knowledge base. Two forms of data acquisition are possible: simulation and

user dialog. Since the digital ground terminal is under direct computer control,

by allowing GTEX to retrieve data from a simulator the dynamic retrieval of

data is portrayed. User dialog provides a mechanism for retrieving data from

the end-user. The end-user is prompted for data whenever interaction is

requested by the end-user or the simulators' inability to yield desired data.

GTEX requires all pieces of data. The current implementation includes no

provisions for reasoning about unknown pieces of data.

2.4 Control system

End-users' require some convention for controlling computer program

execution. Though computers are becoming more common place, people are

still intimidated by them. By not providing mechanisms for control, end-users'

feel constrained, increasing their intimidation of computers. Feeling

intimidated, the end-user will forgo using your program and regress to

alternative methods of performing the same task. Confidence in a computer

program is increased if the end-users' feel they are controlling execution.

Accordingly, the developer has to be careful not to give too much control to the

end-user. If too much control is given, the end user is susceptible to making

mistakes and causing system errors.

GTEX gives the end-user control over the system by a series of push-buttons

and display controls. Push-buttons provide complete control of GTEX execution.

Display controls allow the end-user to examine the digital ground terminal at

various levels of detail. Control possibilities at given instances are limited by the

program execution. Permitting the program to control available actions

prohibits the end-user from making serious errors.



2.5Display system

A graphical interface permits the end-user to interact with the GTEX system.

This type of interface is also known as a direct manipulation interface

(Schneiderman 1987). GTEX incorporates a form of the direct manipulation

interface called a point-and-do interface. Point-and-do direct manipulation

interfaces give the end-user the capability of pointing to commands and objects

on the display to provide the necessary actions. There are some key benefits

associated with this type of interface. Associated with text-based systems, end-

users could introduce typing and memory errors. These errors are caused by the

end-user typing in the necessary commands to perform essential actions. Given

complex and rigid command syntax, end-users can make errors which might be

considered to him as small. However, these errors stop computers from

carrying out commands (Krull & Rubens 1986). Another helpful aspect of point-

and-do interaction is its reducing end-user memory load. By not having to

remember commands and file names; the end-user can capitalize on their spatial

skills rather than requiring them to work through more difficult abstract verbal

reasoning processes(Heckel 1984; Hemenway 1982; Shamonsky 1985; Muter &

Mayson 1986).



CHAPTER III

SYSTEM OPERATION

3.1 Introduction

The GTEX knowledge baseis responsible for the following:

• Fault verification

• Fault isolation

• Fault recovery recommendation

The knowledge base also performs actions, such as displaying key-information

using intermediate dialog and dynamically updating screens based on

conditions within working memory. A detailed discussion of the diagnostic

procedures is presented.

3.2 Assumptions

The following assumptions are made during GTEX execution:

The GTEX system is used as a diagnostic tool, aiding a technician in (1) verifying

that a fault has occurred and (2) performing the necessary tasks to remedy the

problem.

The technician is knowledgeable about performing required tasks, such as

isolating the earth station from outside sources, replacing necessary components,

and knowing the necessary procedures for running the earth station. It is also

assumed that the technician is capable of obtaining data from various sources,

which include the earth station microcomputer system monitors.

The transmit and receive users are located in the same earth station chassis.

If the earth station is connected to the SITE transponder, it is assumed that the

transponder is configured with the traveling wave tube amplifier operating in

low mode. Other modes will change how faults are verified.



10

3.3 Fault verification

Fault verification determines if the earth station is exhibiting a fault under the

current conditions. By verifying a fault, required working memory elements
needed for isolation are initialized.

Initially, GTEX determines the current operating configuration of the earth

station, which includes, the usage of transponder and noise attenuation (if any),

user channel operating configuration and system status. The transponder is

another component of the SITE testbed. The transponder simulates the

operation of the satellite in orbit. Noise can be inserted in the signal by an

external source. The noise unit is always used in conjunction with the

transponder; but it can also be used by itself. The operating configuration of each

channel includes: (1)transmit channel, (2)data-rate, (3)receive channel, and (4)the

current bit error rate(BER). The acquisition status of the earth station is

obtained. Acquisition is the state of the earth station where the transmit and

receive signals are in sync with one another. With out acquisition, the data

received by the earth station is unusable.

Once the information is obtained verification begins. The first procedure in

verifying that a fault exists is determining the current signal to noise ratio

(Eb/N0). The Eb/N 0 is important in determining the performance of the earth

station. The value of the Eb/N 0 is obtained from the attenuation settings. A

linearized formula is used in predicting the Eb/N 0. Once obtained a bit error

rate(BER) measurement can be extrapolated for the given conditions of the

transponder. The BER is a measurement of the bits received in error versus the
total of number of bits received.

BER =

Bits received in error

Total number of bits received

A typical BER for the SITE system is approximately lx10 -7. If the earth station is

running in 'back-to-back' mode for testing purposes the expected BER of the
earth station is '0'.

If the BER extrapolated from the current Eb/N 0 is greater than this value,

reliable communications can not be achieved. If the expected BER is below the

required lx10 -7 verification of each user channel is completed. The expected

BER is compared to the BER measured by each channel. If the BER for a given

channel is higher than the expected, it is assumed to be in error. With this



11

implementation of GTEX, fault isolation will occur only if a single user channel
is in error.

3.4 Fault isolation

Fault isolation provides the procedures for locating the source of the fault. The

isolation procedures selectively narrows the source of the problem to board-

level. These procedures focus the search, thus reduces the time required by the

technician to diagnose the fault.

The first step in isolating a fault is to verify the operation of the earth station.

This is completed by isolating it from all external signals, i.e. transponder. To

verify the operation, the technician is requested to run the earth station using the

initial channel configuration parameters. The earth station is assumed to be the

problem source if the fault reoccurs, or the initial configuration indicates that the
earth station is isolated.

With the initial configuration including an external signal and the isolated earth

station is functioning properly, the technician is prompted by GTEX to again

verify the initial configuration. If the fault reappears the source of the problem

is assumed to be the external signal.

Assuming the earth station as the problem source, the next procedure performed

is locating the fault on either the receive or transmit side of the earth station. The

fault is located by performing a cross test, with the transmit and receive signals

with one of the satisfactorily operating channels. Since the diagnostic

procedures for the transmit and receive sides of the earth station are similar, the

GTEX prototype demonstrates isolating faults that are located on the transmit
side.

Finding the fault on the transmit side GTEX continues. The transmitting user of

the system is tested to see if they are the source of the error. The same type of

cross pattern is applied to the transmitting user. The earth station is designed in

such a manner that the users of the system can also run in a back-to-back mode.

If the fault still occurs, the transmitting user system is assumed to be in error.

The other components in the signal path are checked if the fault does not occur

with the transmitting user. The serial-to-parallel board is the next suspect in the

isolation phase. To verify the operation of the serial-to-parallel board, it is

replaced by a serial-to-parallel board taken from another data channel. The

system operation is once again verified. If the system is verified the serial-to-

parallel board is determined to be the source of the error. Otherwise, then the

transmit first-in first-out(FIFO) board is assumed to be the source.



12

To verify the operation of the FIFO, a transmit test FIFO board is required. The

test board acts like a receiving user-checking the transmitted signal. The system

is verified. GTEX ends isolation at this point, if errors still occur. These types of

errors are outside the scope of GTEX. GTEX then informs the technician about

this conclusion. If no errors occur, the FIFO board is assumed to be at fault.

3.5 Fault recovery recommendation

Recovery recommendation provides the ability to either, (1) display the

necessary procedures for correcting the fault, or (2) display known system status

about the error that can not be determined. Providing the necessary procedures,

the technician can perform the necessary steps for repairing the earth station,
with little effort.

If GTEX can not locate the error, the technician is responsible for completing the

diagnoses. By giving the technician information about the error, procedures will

not be duplicated, thus saving maintenance time.

The recommendation is based on the type of error. If GTEX is able to diagnose

the error, the recommend recovery procedures are presented to the technician. If

a fault cannot be diagnosed, key-elements of working memory are displayed.

These elements include: user channel configurations and the various levels of

isolation completed by GTEX.



13

CHAPTER IV

IMPLEMENTATION

4.1 Introduction

The design specifications of GTEX required that each system function

independently. A message structure was implemented to establish the

communication between the individual systems. The methods used in

implementing each system and message structure is described.

4.2 Message system

A standard communications protocol was defined to provide the needed

interaction between the GTEX subsystems. By developing a standard

communications scheme, the necessity of each subsystem being observant of

other subsystems' formalisms is minimized. The calling subsystem only needs to

tell the communications manager which subsystem is the receiver of the

message. This standard allows subsystem modification without affecting other
written code.

The constructed scheme is modest. A typical call consists of a receiver and a

corresponding message. A typical call to the communications manager follows.

Send-Message Receiver "Message"

Figure 4.1 shows the possible communications paths defined by the

communications manager. The communications manager is written in the 'C'

programming language and can be called from either the ART-IM or C

environments. The calling procedures follow.

ART-IM syntax

C syntax

(send-message receiver "message")

aofnSendMessage(receiver, "message")



14

The 'receiver' is a predefined constant symbolizing an individual subsystem.

Table 4.1 itemizes the available constants. The 'message' is unique to the

individual receivers. Each message structures will be discussed in the

appropriate subsystems descriptions later in this report.

Symbol Subsystem
Display-System

Query-System

Control-System

Display
Query

Control

Table 4.1 -- Receiver Constants

The communications manager associates the receiver constant with the

corresponding function. A call to the receiver function is then generated,

including the 'message' as a parameter. The call to the receiver is then executed.

The receiver is then responsible for parsing the message and acting accordingly.

Request Data

Program Control

<- Message

Object Value ->

Query System

System Control _ .............................................. !:

l Assertion of Factinto Fact Base

Knowledge Base
Message ->

Change Object /
Display

Characteristics

Message ->

<- Object Value

Request User
Response

I

Display System i ............

Figure 4.1 - GTEX Message Structure



15

4.3 Knowledge base

Several rule classifications were used in the design of the GTEX rules:

initialization, verification, isolation, recommendation and miscellaneous rules.

Each classification is described in Table 4.2. Each of these classifications provide

the framework for the system operation. The framework is composed of fault

verification, isolation and recovery recommendation stages. A summary of their

operation is presented; a detailed discussion is presented in chapter3.

Rule Description
Classification

Initialization

Verification

Isolation

Recommendation

Miscellaneous

Provides GTEX with the configuration
parameters for the current scenario

Verifies that a fault exists based on current

parameters

Performs isolation of fault to board-level in

digital ground terminal

Recommends appropriate action based on
fault isolated

Provides additional support to GTEX (ie.

Rules for changing the display)

Table 4.2 -- Rule Classifications

Initialization rules determine the current configuration and status of the earth

station. Based on these facts, the condition of the earth station is determined. If

the earth station is found to be operating unsatisfactorily, the problem source is

isolated. The isolation rules provide the necessary steps for isolating the fault to

board level. Once the fault is isolated the recommendation rules are responsible

for notifying the technician of the procedures to remedy the problem. The

miscellaneous rules are responsible for system initialization, such as the display,
and controlling the system.

Each rule classification is responsible for changing conditions of working

memory based on previous findings. Each rule classification is responsible for

changing the working memory conditions as to the screen to be displayed,

updated etc. By giving all this responsibility to each rule the system would of

become unmaintainable. Therefore, each rule classification was subdivided into

smaller fragments called rule categories, to elevate this problem. The following

rule categories subdivided each classification: display, diagnostic, demon. Each



16

rule category has its own salience or relative priority used in scheduling the rule

for firing. Table 4.3 lists the salience values assigned to the individual

categories. Each rule category is described.

Rule category

Display Rules
Demon rules

Diagnostic rules

Salience

200

100

0

Table 4.3 -- Rule Category Salience

4.3.1 Display Rules

Writing graphical user interfaces in procedural languages has always been

difficult because such interfaces are inherently "interrupt-driven." Interrupt-

driven applications are hard to express in higher-level languages because of the

detailed nature of the interrupts involved. Most high-level procedural

languages wait for the user to respond to an input request. This approach is

clearly inappropriate for mouse interaction.

One way of coping with the interrupt-driven nature of graphics applications is to

use forward-chaining inference rules to express how the application should react

to various events, including mouse interactions. This approach is an ideal means

of specifying interrupt-driven interactions because the rules are always ready to

fire as soon as the pattern appears in working memory. Hardware interrupts,

such as mouse interactions, need only manifest themselves as changes in

working memory and the system can readily respond to mouse events. Since a

data representation for mouse events must already exist, it is trivial to represent
the mouse event at a much higher level of abstraction than "The left mouse

button was released at pixel location (150, 250)," which is essentially what the
hardware provides.

This technique is quite different from conventional object-oriented graphics

programming, in which changes in imagery are invoked by sending object

instance messages to move or change color. Similarly, mouse interactions are

represented by the system's automatically sending a picked message to an object

instance. Both approaches are quite complete, but the inference-based approach

is substantially more expressive than the purely object-oriented one. The result

is that fewer rules (or statements) are required to express an application (Harris
1990).



17

(defrule Display-Screen

(Declare (salience ?*display-salience*))

?fact <- (display screen ?screen)

(schema ?active-display
(Active True))

=>

(delay 2)

(modify (schema ?active-display
(active FALSE)))

(modify (schema ?screen
(active TRUE)))

(Screen (get-schema-value ?screen Display-name))

(send-message Control-System "SubLevel-Display")
(retract ?fact))

(a)

(DEFRULE Ground-Terminal-Is-Isolated

(Continue)

(SCHEMA KB-Transponder
(connected FALSE))

(Schema KB-Attenuator-1

(connected FALSE))

(schema KB-Attenuator-2

(connected FALSE))

(MODIFY (SCHEMA KB-Ground-Terminal-Status

(Isolated TRUE)))

(message 104))

(b)

(DEFRULE Cancel-Input
(DECLARE (SALIENCE ?*demon-salience*))

?fact <- (Continue)

(SCHEMA ?schema

(?slot-name CANCEL))

(retract ?fact)

(modify-schema-value ?schema ?slot-name UNKNOWN)

(send-message control-system "set-continue"))

(c)

Figure 4.2 -- GTEX rule example

(a) Display Rule (b) Diagnostic Rule (c) Demon Rule

The display rules are responsible for control of all graphic displays. Display

rules are activated either by facts asserted by user control or a dynamically

changing condition in working memory. The active rule sends an appropriate

message to the display system with the current request. Display rules allow

modularity in programming. The knowledge base can be altered without



18

affecting the currently created displays. An example of a display rule is shown

in Figure 4.2.a. The display rules have the highest priority thus insuring the user

interface is always current.

4.3.2 Diagnostic Rules

It is important to represent and use domain knowledge in a way in which the

domain expert represents and uses it. The closer the expert system approximates

the expert's mental representation, the easier it will be for the expert to tell you if

the expert system you are building is accurate (Martin et al. 1988).

The diagnostic rules are the foundation of the knowledge base. These rules

perform the fundamental steps required in diagnosing the digital ground

terminal. An example of a diagnostic rule is shown in Figure 4.2.b.

4.3.3 Demon Rules

Demon: A procedure that is activated for the purpose of accessing or changing

values in a data base. It is a type of suspend process that is "waiting" for a

certain kind of event to occur, such as a certain kind of update operation on a

data base. The demon activates when the special event occurs, performs the job,

and either terminates or suspends while awaiting another event. Demons are

typically used to make inferences as new information comes into the data base,

to perform bookkeeping task of some kind, or to recognize important

occurrences.

Definition from: Facts on File Dictionary of Artificial Intelligence

Sitting dormant in the knowledge base are demon rules. The responsibility of

demon rules is to inject vital information into the working memory. An example

of a demon rule is shown in Figure 4.2.c. Demon rules were implemented since

the object system of ART-IM does not handle dynamic message passing. The

objects are unable to send messages based on dynamically changing values.

Demon rules provide this capability.

4.3.4 Object system

The ART-IM environment provides use of an object system represented by

schemas. The schema hierarchy shown in Figure 4.3, represents the overall

object system constructed. The knowledge base hierarchy represents the model

of the digital earth station used in the inference process. The dialog hierarchy

allows the digital earth station model to be associated with dialog requests. The

simulator hierarchy is created dynamically. A detailed description of the object

system is presented in chapter 6.



19

Figure 4.3 -- Overall Schema Hierarchy

4.3.5 Added functionality to the knowledge base

User defined procedures increase the functionality of the knowledge base.

These procedures allow for compact rule construction, thus increasing rule

understanding. Procedures can be created by extending the ART-IM procedural

language by allowing ART-IM commands and specialized functions to be coded

and executed like other predefined system functions. A short description of the
ART-IM extended procures follows.

Get-Schema-Parent

String-Name

Message

Value

Screen

Update-Screen

Reset-GTEX

Send-message

Allows a child to be able to determine who its parent is
and returns it.

Takes an ART-IM symbol and returns a quoted string of
the symbol.

Sends a message to the display system to display a given

message number.

Query a value of the object:slot from the query system.

Sends message to the display system to display a named
screen.

Sends message to the display system that an update

should be performed based on the message sent.

Resets the knowledge base.

The handler which directs the message to the appropriate
system.



2O

Integer-to-string

Mouse-handler

Initialize-simulator

Save-Environment

Clean-Exit

Returns a string representation of the integer which was

given as an argument.

This is the function described for the asynchronous

function processing all mouse input.

This function accepts the filename of the data file to be

parsed and interpreted as the simulator file.

This allows GTEX to be reset, by storing the initial

environment. Called upon entering GTEX.

Performs house keeping, frees memory, etc.

4.3.6 Controlling the knowledge base

The end-user is capable of controlling the execution of the knowledge base. This

is accomplished by the existence of the 'continue' fact. This fact is used in rules

requiring an unknown piece of knowledge. Canceling the request, the 'continue'

fact is retracted. If the end-user elects to continue execution, the 'continue' fact is

re-asserted. Intermediate dialog, which provides the end-user with system

status messages, is also supplied. This type of dialog also allows the end-user to

stop system execution. This dialog is important when the system is responding

to simulator input, thus requiring no end-user interaction.

(DEFRULE Bit-Error-Rate

(Continue)

(schema receive-FIFO-display
(active TRUE))

(SCHEMA ?Channel

(INSTANCE-OF KB-User-Channel)

(Transmit-Channel ?value &: (integerp ?value))

(Receive-Channel ?value2 &: (integerp ?value2))
(BER UNKNOWN)

(Data-Rate ?rate &: (floatp ?rate)))
=>

(message (get-schema-value ?channel BER-Rqst-msg))

(modify (schema ?channel

(BER =(value (string-name ?channel) BER)))))

Figure 4.4 - Example of 'Continue' fact

Giving end-users this type of system control provides for exploration of the

individual displays and resetting or exiting the knowledge base at their

discretion. Figure 4.4 is an example of the 'continue' fact in use. The assertion of



21

the 'continue' fact is a simple but effective way of controlling the execution of the

knowledge base.

4.4 Query system

The query system is a combination of 'C' source code and ART-IM constructs.

The ART-IM schema system provides an efficient method of storing and

retrieving data. The query system accepts a message in the form of an object-

attribute pair, i.e.

"Object Attribute"

Object :Slot Pair )

Is the Simulator

Query the
Simulator with the

Given Object:Slat
pair

s the Value

wn?

a
Ye_

Return °Value"

No

)
Y_

No

Daterine i

Corresponding
Dialog from

Object:Slat pair

Determine Dialog

Value Type

Return "Invalid"

No
Is the data

)

Yes

1
Return "Value" )

Figure 4.5 -- Data request procedure



22

An example query follows.

Send-Message (Query-system "Digital-Ground-Terminal Acquired")

Figure 4.5 shows the procedures associated with a data request. The initial

procedure determines the simulator status. If the simulator is active, data

associated with the object-attribute pair is examined and validation is

performed. If data is not obtained, or the simulator is found inactive, the end-

user is prompted for the required data. Validation of the data is performed and

results conveyed to the proper subsystem.

GenericSchema

Simulator Schema Display Schema

SIM-Attenuators

Figure 4.6 -- Simulator Hierarchy



23

4.4.1 Data simulation

The data simulator was constructed using the schema system defined in the

ART-IM environment. The schema system offered a simple mechanism for

logically representing the digital ground terminal. The simulator representation

of the digital ground terminal is identical to the knowledge base representation.

Technically, the knowledge base and simulator schema definitions are not

isolated from one another. Therefore, a hierarchical class structure was

developed to provide needed isolation between the schemas defined for the

simulator and knowledge base systems. This isolation is required so unexpected

results do not occur in the execution of the knowledge base. An example of this

hierarchy is shown in Figure 4.6.

Since developing a formal simulation of the digital ground terminal was not

practical, an ASCII data file is used to initialize the simulator schema

descriptions. The format of the data file will be discussed later in this section.

Once the simulator has been initialized, access to data is trivial. The message

received contains an object-attribute pair corresponding to a ART-IM schema-
slot definition. The definition is checked for inclusion in the current simulator

hierarchy. If the definition is found, data associated with the schema-slot pair is

validated and returned. If the data is unknown data acquisition responsibility

is passed to the user dialog (Note: Validation determines only if data exists.).

4.4.2 Simulation data file

The simulator data file is a representation of the objects to be included in the

simulation hierarchy. Individual ASCII files can be constructed to represent

varying configurations of the digital ground terminal. An example of a

simulator file is shown in Figure 4.7. The data file is assembled using the

following technique.

Object. Attribute = Value

Acquiring simulation data is initiated by end-user request. Once an end-user

requests data from the simulator and the appropriate simulator data file
initialized, the simulator becomes active.

The simulator data is initialized by deciphering the named ASCII data file. Data

is extracted by parsing the data file to determine the appropriate schema-slot

descriptions. These descriptions are compared to the current hierarchy.

Schema-slot descriptions missing from the hierarchy, are created dynamically.



24

The initial values associated with the schema-slot descriptions are obtained and

converted to adhering ART-IM data types. Allowable data types are listed in

Table 4.4.

Data Type

Integer
Hexidecimal

Floating Point

String

Example
256

0xBCD

1.0e-3.0

"Connected"

Table 4.4 -- Allowable data return types

Sim-Transponder.is-a = Simulator-Schema

Sim-Transponder.instance-a = Transponder

Sim-Transponder.Connected = FALSE
Sim-Attenuator.is-a = Simulator-Schema

Sim-Attenuator.is-a = Attenuator

Sim-Attenuator.Connected = FALSE

Sim-Attenuator-l.instance-of = Sim-Attenuator

Sim-Attenuator-l.Setting = 27
Sim-Attenuator-l.Device-Number = 1

Sim-Attenuator-2.instance-of = Sim-Attenuator

Sim-Attenuator-2.Setting = 14
Sim-Attenuator-2.Device-Number = 2

Sim-User-Channel.is-a = Simulator-schema

Sim-User-Channel.is-a = User-Channel

Sim-Channel-l.instance-of = Sim-User-Channel

Sim-Channel-l.Transmit-Channel = 2

Sim-Channel-l.Receive-Channel = 1

Sim-Channel-l.Data-Rate = 25.0

Sim-Channel-l.BER = 0.000

Sim-Channel-2.instance-of = Sim-User-Channel

Sim-Channel-2.Transmit-Channel = 3

Sim-Channel-2.Receive-Channel = 2

Sim-Channel-2.Data-Rate = 25.0

Sim-Channel-2.BER = 3.000D-5

Sim-Channel-3.instance-of = Sim-User-Channel

Sim-Channel-3.Transmit-Channel = 1

Sim-Channel-3.Receive-Channel = 3

Sim-Channel-3.Data-Rate = 25.0

Sim-Channel-3.BER = 0.0000

Sim-Ground-Terminal-Status.is-a = Simulator-schema

Sim-Ground-TerminaI-Status.is-a = Ground-Terminal-Status

Sim-Ground-Terminal-Status.Acquired = STEADY

Figure 4.7 - Simulator data file



25

4.4.3 User dialog

An inactive simulator or an unknown simulator value is justification for

activating the user dialog sequence. The condition of an inactive simulator is the

default condition for data retrieval. The end-user can also explicitly tell GTEX

that user dialog is to be employed. A hierarchy, similar to the simulator

hierarchy, indicates the correct display dialog to be applied to obtain the

necessary data. The display subsystem is responsible for displaying the dialog

and returning the entered value. The syntax follows:

send-message display-system "dialog message"

The message is the named dialog display returned by the corresponding dialog

schema-slot inquiry.

The query system is also responsible for verifying end-user data. In addition to

returning the dialog name, the dialog schema-slot definition returns the

symbolic representation of the expected data type. Expected data types are those

listed in Table 4.5. The expected data type is compared to the type of data

returned by the end-users' response. If the returned data type is invalid, the

end-user will be informed and user dialog reiterated. The data is then returned

to the appropriate subsystem.

Data Type

Integer
Hexidecimal

Floating Point

Strint_

Example
256

0xBCD

1.0e-3.0

"Connected"

Table 4.5 -- Allowable Data Return Types

4.5 Control system

The control system receives messages from the knowledge base. These messages

represent varying conditions of the knowledge base. Depending on the

situation, the control system will activate the appropriate push-buttons

accordingly. The message syntax is as follows:

Syntax: "Status"

Example: Send-message (control-system "simulator-loaded")



26

The 'Status' parameter represents the condition of the knowledge base. The

following instance represents this type of directed control.

The end-user is given the opportunity to cancel dialog at their discretion. In

doing so, the end-user suspends additional rule firings which may occur. The

knowledge base is responsible for suspending additional rule-firings and

sending a message to the control system that dialog has been canceled. The

control system responds by activating the 'Continue' push-button. The end-user

then has the ability to; Reset GTEX, Continue Execution or Exit GTEX.

4.5.1 GTEX controls

A mouse pointing device provides control of GTEX execution. This type of

device alleviates the end-user from typing commands necessary to perform a

task. The first procedure upon entering the control system is checking mouse

activity. Detecting none, program execution reverts to the inference engine.

Action verification is performed upon detecting mouse activity. Once the action

has been verified, an appropriate fact is asserted into working memory. Two

types of control are possible: system and display.

4.5.2 System control

System control, represented as push-buttons, are responsible for governing the

execution of GTEX. The possible controls are itemized in Table 4.6. Control is

provided for selecting an appropriate scenario. Additionally, the capabilities of

resetting the system and controlling the inference process are provided. By

asserting the appropriate fact the control system informs the knowledge base of

the end-users' request.

4.5.3 Display control

Display controls enable the end-user to view varying levels of the digital ground

terminal and associated subsystems. If the control system locates mouse activity

on the display page, the first procedure determines the current display page.

The exact mouse position is then determined. Finding the mouse within valid

boundaries, a corresponding fact is asserted into working memory. The

knowledge base responds by determining the correct page to display and

sending the appropriate messages to the display system.



27

Optimally, the end-user should notice a physical change to the current display in

response to mouse selection. The version of the graphics library used hindered

the development of either approach for use with display control. However,

unwanted mouse display selections minimally affect the end-user. System

control capability allows the end-user to 'back-up' to the next highest system in

the hierarchy.

Control Type Push-Button Description
Name

Display Backup Backup

Scenario Display

Select Scenario

Verify Fault

Isolate Fault

Recommend Action

Reset System

Continue Execution

Exit

Scenario

Select

Verify

Isolate

Action

Reset

Continue

Exit

Allow end-user to navigate backward

through the display hierarchy.

Display available scenarios; A

description of each scenario is given.

Select appropriate scenario.

Start the diagnostic process.

Once verified fault can be isolated.

Once the fault has been isolated

request GTEX to recommend an

appropriate action.

Allow the system to be reset; other

scenarios can be explored.

Allow system to continue from

cancellation of dialog.

Exit GTEX

Table 4.6 -- System controls and descriptions

4.5.4 Control Realization in the ART-IM Environment

The control system implements a constructor ART-IM defines as an

asynchronous function. An asynchronous function provides a mechanism for

calling an user defined function automatically between rule firings. Normally,

ART-IM suspends execution when there are no more rule activations. A flag
included in the ART-IM environment, 'Set-halt-when-no-activations' controls this

phenomenon. Setting the 'Set-halt-when-no-activations' flag to NIL insures

system execution continues when the agenda is empty. During system

execution, once the agenda is empty the system repeatedly calls the predefined



28

asynchronous function, waiting for end-user interaction. Once the end-user

selects one of the available control mechanisms, the system reacts to the fact

asserted into working memory. Resetting the 'Set-halt-when-no-activations' flag

to T halts system execution.

4.6 Display system

Screen design is still a black art (Peterson 1979). One of the first rules to consider

when designing a user interface screen is to keep it as simple and uncluttered as

possible. Peterson expresses it in this way.

"Try to present an entire, logically connected thought on the screen at one time. A good

way to tell if you have one idea is, if you can think of a title. If you cannot think of a title

for that screen, it probably contains to much data or a bunch of unrelated information."

Ideally, point-and-do interfaces should make clear what properties a screen

object has. When the objects on the screen and their associated properties can be

inferred, the user then can explore the different screens, acting on individual

items as if they were real (Shamonsky 1985). The developer of display screens
has to insure that control over data, texts, or formats which are essential to the

system operation is not given to the end-user. The user interface must always be

under system control. Peterson states this by saying, "Don't give naive or

careless users the weapons they need to blow themselves out of the water."

These kinds of situations can be avoided if the end-user is given the opportunity

to either back up or back-out safely. This joins with the feature of most point-

and-do interfaces, reversibility. Since end-users are given the opportunity to

explore the system, allowing for easy reversal of actions, either through an

'undo' option or through complementary opposing actions, can save users

considerable aggravation (Schneiderman 1987; Shamonsky 1985).

One other important aspect of screen design is good dialogue. Providing good

dialogue means dialogue that is easy to use and is understandable. These are

common-sense considerations which must be taken into account. Dialogue as in

screen design must be designed to your users' capabilities. By designing the

dialogue to your end-users' capabilities, the dialogue will increase the

throughput and decrease error rates of the end-user. By providing a dialogue

which is not frustrating to the end-user, an improved morale will result.

Peterson expresses good dialogue in the following manor;

"Good dialogue is not easy to achieve. You must understand your users and how they

perceive what they do for a living. You must design to your users' jobs. Your users are

already out there doing something and they are going to continue to do whatever they

do now, only they will be using your latest application to do it."



29

In conformance with the previous discussion of good dialogue, a program

should always respond to the user. Peterson points out that nothing is more

frustrating to the user than hitting a key and watching the screen go blank, and

not having a clue to the systems' operating status. This can be avoided by giving

the end-user a series of in-progress messages. Messages are the system's way of

communicating with the user. Peterson cleverly states, "Today's hesitant novice

is tomorrows impatient expert."

4.6.1 GTEX graphics interface

Text based graphics displays limit the ART-IM environment. The standard

interface tools provided by ART-IM are not capable of handling graphics

operations such as lines and circles. ART-IM supports an interface to a graphical

set of tools developed by South Mountain Software to construct such complex

images. One of the penalties of going with a graphics environment is a slow

down in overall system performance; negligible in GTEX.

Encompassing the arguments from the previous discussion and these tools, a

graphical environment was developed. The display system of GTEX supports

dynamic interaction by the end-user.

4.6.2 Display window

The following categories separates the display window: Display page, Status,

and Control areas. The display page and control areas exemplify the point-and-

do interface. Using a mouse, the end-user selects active regions for navigation

and system control. Status messages keep the end-user informed of system

operation.

4.6.3 Message structure

The display system processes several distinct messages from the other

subsystems. These message types include Dialog, Display, Initialize, Message,

Update, and Warning. These messages provide a modular approach to display

design. The display receives messages from the knowledge base and query

subsystems.

The general message syntax follows.

Send-Message Display-System "Action Action-Message"



30

The 'Dialog' action is responsible for processing system requests for data. The

display system upon receiving a dialog action halts system execution. Execution

does not continue until the end-user responds to the request. The query

subsystem initiates the dialog message.

Syntax: "Dialog Dialog-Name"

Example: send-message (display-system, "Dialog Transponder-Connected")

The 'Display' action permits display of a designated page of information. The

associated message indicates the page requested by the end-user. The 'Display'

message originates in the knowledge base.

Syntax: "Display Display-Name"

Example: send-message (Display-System, "Display SITE-System-Display")

The 'Initialize' action is a request to place the monitor into the correct video

mode and define the display background. The 'Initialize' action is also

responsible for sending the correct message for displaying the introduction page.

The 'Initialize' action originates in the knowledge base.

Syntax: "Initialize"

Example: send-message (Display-System, "Initialize")

The 'Message' action will display a status message in the status area; discussed

later. The status messages allow the end-user to be consciously aware of the

current reasoning. The 'Message' action originates in the knowledge base.

Syntax: "Message Message-Number"

Example: send-message (Display-System, "Message 102") 1

Once the display system receives the 'Update' action, corresponding screen

objects are modified. The 'Update' action informs the knowledge base that

modifications are complete. It is then the responsibility of the knowledge base to

send the appropriate message to update the physical page. The 'Update' action

is initiated by the knowledge base.

1 The message number will be discussed later in this section.



31

Syntax: "Update Device-Change"

Example: send-message (Display-System, "Update no-transponder")

'Warning' actions appear in the form of dialog. This allows dialog to inform the

user of the critical conditions about system performance. The 'Warning' action

originates in the knowledge base.

Syntax: "Warning Dialog-Name"

Example: send-message (display-system, "Warning Data-unavailable")

Table 4.6 provides a summary of the different actions received by the display

subsystem.

Action

Dialog

Display
Initialize

Message

Update

Warninl_

Initializing Subsystem

Query

Knowledge Base

Knowledge Base

Knowledge Base

Knowledge Base

Knowledge Base

Action Message

Dialog-Name

Page-Name

Message-Number

Device-Change

Dialog-Name

Table 4.6 - Action Messages

4.6.4 Main display

The main display design allows technicians with a minimum amount of training

to be proficient in diagnosing the digital ground terminal. The display is

dynamic to allow the end-user to pin-point the fault with little effort. This will

speed the troubleshooting process. The design guidelines were modeled after

the following criteria:

1) Information regarding the status of individual components is known.

2) Providing a method of keeping the display a distinct focus

System specifics are browsed by selecting the appropriate subsystem on the

current page. By selecting a subsystem, further detail is revealed. The level of

detail included within GTEX allows the end-user to display subsystems to the
board-level.



32

4.6.5 Display page

The end-user can browse the subsystems of the digital ground terminal to

pinpoint the fault (if there is one). The end-user will then know where to focus

attention in the physical ground terminal for the fault location. Each display

page contains the following components:

• Title

• Devices

• Line Segments

• Display Text

• Other

The 'Title' represents the title of the current page. 'Devices' are associated with

the different components of the digital ground terminal. Each device

corresponds to an individual object or group of objects within the database.

Links between devices and page objects are provided by the action messages

sent to the display subsystem. This method allows the developer to update the

system page independent of the knowledge base. The 'line segments' provide

interconnection between the devices. 'Display text' allows miscellaneous text to

be presented, This information permits other aspects of the subsystem to be

labeled, without creating new devices. 'Other' includes a technique for

displaying individual page characteristics not conforming to one of the other

categories. This capability provides the flexibility for displaying available

values of the varying subsystem components.

4.6.6 Status area

The status area provides the end-user with the current state of the GTEX system

execution. Specific messages are relayed to the user which include the

following:

• Normal Status

• Request

• Affirmative Status

• Negative Status

Normal Status

Example: Mouse-Handler Installed



33

The normal status message includes messages representing those situations

which occur as in the above example. Included, are all negligible conditions

which occur during the execution of the system.

Request

Example: Rqst: Attenuator-1 Setting

Request Messages are displayed when interaction with the simulator or the end-

user is required. This provides a resource for the end-user to perceive what data

is being referenced.

Affirmative Status

Example: Ground Terminal Isolated

Webster's Dictionary includes the following definitions of affirmative and

positive.

Affirmative: Asserting that a fact is so.

Positive: Affirming the presence of that sought or suspected to be

present.

Relating this to GTEX, affirmative status displays facts about the digital ground
terminal that are found to have occurred in a favorable manner.

Negative Status

Example: Transponder NOT Connected

Webster's Dictionary includes the following definition of negative.

Negative: Not affirming the presence of the organism or condition

in question.

Negative status messages illustrate facts about the digital ground terminal which
cannot be found affirmative.

As noted, the syntax of the message action includes a message number. This

message number corresponds to the status message to be displayed. Upon

entering GTEX, a message database is initialized. The numeric delineation



34

provides an indexing strategy for the database. Table 4.7 lists the numeric range

representing the status messages categories.

Status message classification also permits a color scheme display representation.
The color scheme is defined in Table 4.8. Color offers an efficient means of

representing the types of status messages. The end-users can quickly scan and

decipher messages, allowing the current line of investigation to be determined.

Numeric Range
0 - 99

100-199

200-299

300-399

Status Type
Normal Status

Request Status
Affirmative Status

Negative Status

Table 4.7 -- Numeric Range of Status Messages

Color Status Type
Brown Normal Status

Cyan Request Status
Green Affirmative Status

Red Negative Status

Table 4.8 -- Color Representation of Status Message

The display system handles status message requests by performing a database

search. The database is parsed to determine the correlation of the message

position versus the numeric representation. The results are accumulated into a

linear array. Indexing of the array is based on the numeric representation of the

status message. Keeping memory requirements to a minimum, only the file

record position is stored. When a request is made the status message number is

determined and appropriate record number retrieved. The database is queried

and extracted status messages displayed.

Status messages are represented using two display formats. The active message

is displayed in a highlight or bold style. This gives the end-user a quick

reference in locating the current message. Additionally, the status area retains

the previous eight messages. End-users see a history of messages, which assist

in deducing the current reasoning process. These additional messages are

displayed in the normal intensity of color corresponding to the status type.



35

4.6.7 Control area

The control area provides the visual reference for controlling the system. The

controls are implemented as push-buttons. See the section on the control system

in this chapter for a description.

4.6.8 User dialog

Two methods are implemented for obtaining data in GTEX; user dialog and

simulation inquiry. By providing user-dialog, the system can prompt for needed

information. Besides providing needed information, dialog can be used to

convey important messages likely missed in the status message area. Keeping

consistent with the graphical user interface, the ART-IM capabilities of

supporting user-dialog where abandoned. Implementing the ART-IM style of

user-dialog meant switching between different display modes which was not

feasible. Therefore, a scheme was constructed for supplying user dialog. User-

dialog is completed synchronously, requiring end-user response for continuation

of system execution. Figure 4.8 is a representation of the different types of

dialogs provided by GTEX.

Several tools created allow the end-user to respond to given dialog. These tools

include push-buttons, radio-buttons and edit-text.

Push buttons serve a dual role in the dialog scheme. They are responsible for

either gathering information as in yes or no situations, or to provide control over

data provided by the other tools. By selecting a push-button the dialog box is
removed and data recorded.

Radio-buttons limit the possible responses of the end-user to the given dialog.

This type of dialog is useful when limited choices for a given dialog are

available. Radio buttons operate in an exclusive-or fashion. Multiple radio

button groups can be included in a dialog at the developers' discretion.

Edit-text provides the user with an opportunity to type in the values requested

by the dialog. Editing capability allows the end-user to respond when data is

unbounded. One disadvantage of giving the end-user editing capability is

providing an opportunity for him to make mistakes when entering data. 2

Therefore, using editing capability should be considered last when developing

user-dialog.

2Note; The user dialogue provides a vehicle which to request information, the query system is

responsible for checking the integrity of the actual values.



36

15 the TRANSPONDER used

in the current

configuration ?

What im the Current Bit

Error Rate of Channel 1?,

(example) I.OE--lO

I_ I

Figure 4.8 -- GTEX Dialog Displays



37

CHAPTER V

OBJECT-ORIENTED PROGRAMMING

5.1 Introduction

As humans it is more natural for us to think about our world in terms of

different objects. Consider an automobile; if someone was asked, "What is an

automobile," they might respond by saying that an automobile is a means of

transportation from destination-A to destination-B. They may also add, "To get

from destination-A to destination-B the automobile requires sufficient amounts

of different fluids that allow the automobile to operate."

One classification of the automobile is that it is a mode of transportation. If

asked to describe our automobile, we could respond by giving the general

characteristics of an automobile, saying that it has: four tires, either two or four

doors, a steering wheel, an engine, etc. We could also describe our automobile

by stating the make, model and year it was assembled. These characterizations

allow us to define other classifications of our automobile.

This idea of objects is extending into the way computer programs are developed.

This programming philosophy is termed object-oriented programming. One

author describes object-oriented programming in the following way.

"Object-oriented development is fundamentally a new way of thinking and not a

programming technique. The development of an object-oriented application is a

conceptual process independent of a programming language until the final stages.

Superficially the term 'object-oriented' means that we organize software as a collection

of discrete objects that incorporate both data structure and behavior. This contrasts

with conventional programming in which data structure and behavior are only loosely
connected." (Rumbaugh, et al. 1991)

5.2 Characteristics of an object

The two important building blocks of object-oriented technology are data

abstraction and encapsulation (Rumbaugh, et al. 1991).



38

Abstraction is defined as, "a mental facility that permits humans to view real-

world problems with varying degrees of detail depending on the current context

of the problem" (Rumbaugh, et al. 1991). Abstraction focuses on the general

characteristics of an object. Emphasis during system development is placed on

what the object is and does, before deciding how it is to be implemented. As in

the example of the automobile, the characteristics that are common to all

automobiles; four tires, an engine, how to operate the automobile, etc, become an

abstraction of the group of individual automobiles. Proper abstraction allows

our model to be used from the initial design to the actual implementation.

Encapsulation, or information hiding, is a technique the divides the external

characteristics of an object from the internal, implementation details of the object

(Rumbaugh, et al. 1991). By applying encapsulation principles to objects, each

object's implementation is independent. This prevents a program from showing

signs of the ripple effect, where small changes have massive side-effects.

Therefore, the implementation of an object can change without affecting the

other objects addressing it.

By using abstraction and encapsulation as building blocks the following

characteristics of object-oriented programming evolve: identity, classification,

polymorphism and inheritance.

5.2.1 Identity

Objects can either be tangible like a digital earth station, or conceptual such as a

communication signal from the earth station to the satellite. Identity implies that

individual objects have a distinct personality. The concept of identity also

applies to multiple objects having identical characteristics. Consider two

automobiles having identical features; each automobile is constructed

individually with distinct components, giving each its own identity.

5.2.2 Classification

A classification or 'class,' is constructed by applying abstraction principles to a

given set of objects. A class can be thought of as a template, from which

individual objects are cloned. A class definition incorporates those

characteristics and behaviors common among the set of objects. The

characteristics chosen are arbitrary and depend on the application at hand.



39

5.2.3 Polymorphism

Operations, called 'methods,' are bound to individual classes. Methods describe

the general behavior exhibited by an individual class. "Polymorphism implies

that the same operation can behave differently on different classes (Rumbaugh,

et al. 1991)."

This concept is best described by an example. Consider the following:

A computer card-game with graphics was designed using object-oriented techniques.

The developer defined classes representing both the individual players and a graphics

display window. A operation called 'draw' was applied to both classes. The behavior

of the 'draw' operation of the card-game class represents the act of drawing a card from

a deck. The behavior of the 'draw' operation of the display window class describes the

steps required to display a graphics window.

This computer card-game exhibits polymorphic behavior. The behavior of the

'draw' method changes, when associated with the different classes.

5.2.4 Inheritance

Inheritance is the sharing of characteristics and behaviors among objects based

on a hierarchical relationship (Rumbaugh, et al. 1991). By applying abstraction

to sets of classes, a general class or 'superclass' evolves. Each member of the set

becomes a subclass of this new superclass. The new subclasses will inherit those

characteristics and behaviors now displayed by the superclass and retain those

features that make it unique.

5.3 Object-Oriented Techniques in GTEX

Object-oriented techniques are used extensively throughout GTEX. The

techniques used in the development of the GTEX modules will be described.

The following classifications are used.

• Ground Terminal Model

• Display Hierarchy

• Display Objects

5.3.1 Earth Station Model

The characteristics of the digital earth station are represented in GTEX by an

object hierarchy. A generic object representation of the earth station is shown in



40

Figure 5.1. Three classifications of the earth station were defined: knowledge

base, dialog, simulator. The object hierarchies were developed using the ART-

IM schema notation. A prefix notation was used in defining each classification.

The prefixes are; 'KB-', 'DLG-', and 'SIM-' respectively.

SITE

Digital Earth
Station

Attenua_on

Figure 5.1 -- Earth station hierarchy

The knowledge-base hierarchy provides the model for reasoning about the earth

station. Figure 5.2.b illustrates an example of a knowledge-base schema.

The dialog hierarchy was created to provide an efficient means of retrieving

dialog information. The dialog hierarchy is identical to the knowledge base

hierarchy except the attribute values represent the dialog message responsible

for obtaining the necessary piece of data. Figure 5.2.c illustrates an example of a

dialog schema.

The simulator hierarchy provides a third model of the earth station. The

simulator hierarchy represents a physical earth station configuration. This

information is queried as if GTEX was physically connected to the earth station.

Figure 5.2.d illustrates an example of a simulator schema.



41

(defschema User-Channel

(Configured FALSE)
(Transmit-Channel UNKNOWN)

(Receive-Channel UNKNOWN)

(Data-Rate UNKNOWN)

(Channel-Number UNKNOWN)

(BER UNKNOWN)

(Error-Channel UNKNOWN)

(tx-rqst-msg UNKNOWN)

(rx-rqst-msg UNKNOWN)

(dr-rqst-msg UNKNOWN)

(error-msg UNKNOWN)

(valid-msg UNKNOWN))

(a)

(DEFSCHEMA KB-Channel-1

(INSTANCE-OF KB-User-Channel)

(Channel-Number 1)

(tx-rqst-msg 206)

(rx-rqst-msg 207)

(dr-rqst-msg 208)

(ber-rqst-msg 215)

(error-msg 308)

(valid-msg 111))

(b)

(DEFSCHEMA Dig-Channel-1

(INSTANCE-OF Dig-User-Channel)
(Channel-Number 1)

(Transmit-Channel CTX-Channel-l" INTEGER))

(Receive-Channel ('T,X-Channel-l" INTEGER))

(Data-Rate ("DT-Channel-l" FLOAT))

(BER ("BER-Channel-l" FLOAT)))

(c)

(Schema SIM-Channel-1

(INSTANCE-OF SIM-User-Channel)

(Channe|-Numer 1)

(Transmit-Channel 2)

(Receive-Channel 1)

(Data-Rate 25.0)

(BER le-10))

(d)

Figure 5.2 - Schema definitions in GTEX

(a) Generic Definition (b) Knowledge Base Schema

(c) Dialog Schema (d) Simulator Schema



42

5.3.2Display ScreenHierarchy

Since the end-user of GTEX is capable of navigating through several screens,an
interconnection between the varying screens was required. A hierarchical

relationship was developed. The screen hierarchy is shown in Figure 5.3.

GTEX-Display

Recovery

SITE System

Introduction

Screen 2

Screen 3

Figure 5.3 -- GTEX screen hierarchy

The display screen hierarchy is used by the knowledge base and control

modules. The knowledge base is responsible for setting the current page based

on working memory conditions. The control system uses the hierarchy to

determine which areas of the current page are active for navigation. The display

hierarchy was developed using the ART-IM schema notation.

5.3.3 Display Page Objects

A technique was needed to provide an efficient means of constructing the

necessary dialog and displays screens. Representing these entities as objects

proved to be the most effective. Table 5.1 lists the various classes available. Of

the available classes, two are dominant, the window and dialog.



43

Object Attributes Methods

Point

Dimension

Button

ButtonGroup

Dialog Text

Edit Dialog

RadioButtonGroup

RadioButtonSet

X-Coordinate

Y-Coordinate

Length
Width

Point

Dimension

Status

Active

Label

Fact Asserted

Array of But_n

Point

Color

Text String

Alignment
Font

Point

Dimension

Active

Text String

ButtonGroup
OldButton

NewButton

Array of RadioButtonGroup
Active

Up
Down

Action when Selected

Pressed

Released

Initialized

Valid

Initialize

Initialize

Print Text

Initialize

Update

Initialize

Table 5.1.a - Display Objects



44

Attributes Methods

Object

Dialog Initialize

Device Text

Device

Line Segment

Display Text

Window

MouseButton

Mouse

Point

Dimension

DialogText

ButtonGroup

EditDialog
RadioButtonSet

Point

Color

Text String

Alignment

Point

Dimension

Color

Device Text

Point

Length
Direction

Pointer

Point

Color

Alignment
Font

Text String

Title

Array of Device

Array of Line Segments

Array of Display Text

Left

Right

Point

MouseButton

Draw

Draw

Draw

Draw

Draw

Draw Misc.

Pressed

Released

Table 5.1.b -- Display Objects Continued



45

Figure 5.4 shows the hierarchy of the window class. As illustrated, devices, line

segments and display text provide the foundation of the display window.

Active areas on each window were created by combining the device and button

classes.

DeviceClass

Class

Window Class

Window-1

Window-2

Window-n

Figure 5.4 -- Window hierarchy

:.ditableText
Class

Button
Class

Class

Dialog Class

Dialog-1

Dialog-2

Dialog-n

Figure 5.5 -- Dialog Hierarchy



46

Figure 5.5 shows the dialog class hierarchy. The dialog is able to obtain

information from either control buttons, radio-buttons and editable text. The

display objects' representations were created using 'C' language programming

techniques.

5.4 Extending the Object Capability of GTEX

Variations on the C programming language were used to simulate the objects

needed by the display system. The concept of the structure in the C language

was used for the representation of the class; example is shown in Figure 5.6.a.

The use of a constructor in the 'C' language called a "structure," allows complex

data to be represented. The 'C° language allows arrays of structures, structures
to be nested, and the address of a structure to be determined. These

characteristics provided the basis for simulating a class hierarchy. Other

structure members may include other valid data types, giving the object its

characteristics, etc. A typical instance declaration is shown in Figure 5.6.b.

struct Window

{

char Tit|e[40];

struct Device *WinDevice[20];

struct LineSegment *WinLineSeg;

struct DisplayText *WinDspTxt;
void (*DrawMisc)0;

};

(a)

struct Window wnGndTrmSub =

{

"Phase II - Digital Ground Terminal",
[ &dvTxFIFO11, &dvTxFIFO21, &dvTxFIFO31, &dvTxScramblerl,

&dvTxOrderwirel, &dvParToSeriall, &dvModulatorl, &dvDemodulatorl,
&dvSerialToParl, &dvStrecherl, &dvRxReferencel,

&dvRxFIFO11, &dvRxFIFO21, &dvRxFIFO31,

&dvTxTimingl, &dvRxTimingl, &dvOWProcessorl, (struct Device *) NULL},
&lsGndTrmSub[0],

&dtGndTrmSub[0],

vfnGndTrmKey
};

(b)

Figure 5.6 -- 'C' Language representation of objects
(a) Class definition (b) Instance declaration



47

Gaining the addressof the structure was vital. This allows the structure to be

passed by reference instead of passing individual structure members. It was

also important in defining class methods. Referencing a structure by address

allowed functions to be generically created. The generic functions provided the

concept of a method. Methods are referenced as a structure member. Since each

structure can have the same member name as another structure, polymorphic

relationship exists between classes. Figure 5.7 shows a typical method in the

display environment.

void

{
vfnDrawWindow( struct Window *wnWinDef)

int iLine;

struct LineSegment *TempLineSeg;

struct DisplayText *TempDspTxt;

m_curoff0;

vfnClearScreen0;

vfnPrintTitle(wnWinDef->Title);

iLine = 0;

while(wnWinDef->WinDevice[iLine] != NULL)

dmdDevice.vfnDraw(wnWinDef->WinDevice[iLine++]);

TempLineSeg = wnWinDef->WinLineSeg;

while( (wnWinDef->WinLineSeg != NULL) &&

!wnWinDef->WinLineSeg->bEndFlag )

lsmdLine.vfnDraw(wnWinDef->WinLineSeg++);

wnWinDef->WinLineSeg = TempLineSeg;

TempDspTxt = wnWinDef->WinDspTxt;

while( (wnWinDef->WinDspTxt != NULL) &&

!wnWinDef->WinDspTxt->bEndFlag )

dtmdText.vfnDraw(wnWinDef->WinDspTx t+ +);

wnWinDef->WinDspTxt = TempDspTxt;

wnWinDef-> DrawMisc0;

m_curon0;

Figure 5.7 -- Object method in 'C'



48

5.5The C - Language Naming Convention

A variable naming convention was defined to enhance debugging ability and

understandability of the 'C' code. The Hungarian naming convention was used.

This convention defines how variables are created. Very simply, the variable

name begins with a lower-case letter or letters that denote the data type of the

variable. This notation, adopted by the Microsoft Windows programmers, helps

to avoid errors in the code before they turn into bugs. Because the name of a

variable describes the use of the variable and its data type, there is less chance of

coding errors involving mismatched data types. Table 5.2 is a listing and

description of the prefixes used in the coding of GTEX.

Prefix

ao

aofn

as

at

b

ba

bf

bfn

bg
bs

bt

da

Variable Type

Art Object

Art Object Function

Art Symbol

Art Template
Boolean

ButtonAction

Buffer

Boolean Function

ButtonGroup
ButtonStatus

ButtonType

DisplayAction
dafn

dg
dm

dm

dmd

dt

dv

ed

f

g
i

DisplayAction Function

Dialog
Dimension

DisplayMessage
Device Method

Device Text

Device

EditDialog
File

Graphics buffer

Integer

Prefix

Is

lsmd

mb

mbp

mgt

mgtfn
n'u"

mt

pt

rbg
rbs

S

sfn

sy

syfn

Variable Type

Line Segment

Line Segment Method
Mouse Button

Mouse Button Pointer

Message Type

Message Type Function

Message Record

Mouse Type
Point

Radio Button Group
Radio Button Set

String

String Function

System

System Function
u

ud

ufn

v

vfn

wn

Unsigned

UpdateDevice

Unsigned Function
Void

Void Function

Window Method

Window

Table 5.2 - Prefix definitions



49

CHAPTER VII

SUMMARY

The GTEX prototype was successfully completed. The GTEX prototype

demonstrates the feasibility of applying expert system technology to the area of

satellite communications. The modular architecture of GTEX reduced the

complexity of the development environment. Allowing each system to function

independently, eases future system development. This modularity also allows

GTEX to be ported to other platforms.

By incorporating object-oriented techniques in the GTEX design, maintainability

of the individual systems increased. It also increased the functionality of the

individual systems. This increase was significantly noticed in the development

of the display system. By applying object-oriented techniques the display

system became more dynamic.

Implementing rule classifications increased the functionality of the knowledge

base. The display rules allowed the knowledge base to control graphics, adding

to the dynamic nature of the display environment. Demon rules increased the

functionality of the ART-IM object system by allowing changes in working

memory to affect the system operation.

Creating a query system capable of accessing various data sources a flexible

system was established. The query system supplies data after receiving an

inquire from the knowledge base thus, the knowledge base is unaware of how

the data originated. The current framework of the query system provides the

necessary structure for creating a dynamic link with the earth station.

Future considerations include increasing the capability of the current knowledge

base and establishing a physical connection with the current earth station for

data retrevial. This enhanced capability will increase the opportunity for

transferring this technology to the public sector.



50

REFERENCE / BIBLIOGRAPHY

ART-IM Programming Language Reference, Inference Corporation, Los Angles,

California, 1989.

ART-IM in the DOS Environment, Inference Corporation, Los Angles, California,
1989.

ART-IM Reference Manual, Inference Corporation, Los Angles, California, 1989.

Budinger, J., "A Burst Compression and Expansion Technique for Variable-Rate

Users in Satellite-Switched TDMA Networks," NASA Technical Memorandum

102414, Cleveland, Ohio, January, 1990.

Bulman, D., "An Object-Based Development Model," Computer Language,

August 1989, 49-59.

Chase, S., "VSATs in America Who's Going to Survive?," Via Satellite, November

1990, 40-48.

Harris, L., "User Interfaces for Inference-Based Programs," AI Expert, October

1990, 42-46.

Ivanic, W., Andro, M., Nagy, L., Budinger, J., Shalkhauser, M., "Satellite-Matrix-

Switched, Time-Division-Multiple-Access Network Simulator," NASA Technical

Paper 2944, Cleveland, Ohio, October, 1989.

Levenberg, J., "How much does a VSAT Network Cost," Via Satellite, February,
1992, 62-64.

Martain, J., Oxman, S., Building Expert Systems A Tutorial, Englewood Cliffs,

NJ, Prentice Hall, 1988.

Peterson, D., "Screen Design Guidelines," In Tutorial: End User Facilities in the

1980's, editied by James A. Larson, NY,IEEE, 1982.



51

Petzold, C., Programming Windows, Redmond, Washington, Microsoft Press,
1990.

Rolston, D., Principles of Artifgical Intelligence and Expert Systems

Development, New York, NY, McGraw-Hill, 1988.

Rumbaugh, R., Blaha, M., Premerlani, W., Eddy, F. Loreson, W., Object-Oriented

Modeling and Design, Englewood Cliffs, NJ, Prentice Hall, 1991.

Schlegelmilch, R., Durkin, J. Petrik, E., "GTEX: An Expert System for Diagnosing

Faults in Satellite Ground Stations," Proceeding of the Space Communications

Technology Conference Onboard Switching and Processing, November 12-14,

1991, Cleveland, Ohio, 103-12.

Shalkhauser, M., "Satellite Ground-Terminal User Simulation," NASA Technical

Memorandum 100234, Cleveland, Ohio, January, 1988.

Shalkhauser, M., "Design and Implementation of a Microcomputer Based User

Interface Controller for Bursted Data Communications Satellite ground

Terminals," NASA Technical Memorandum 101375, Cleveland, Ohio, December,
1988.

Sinha, A., Agrawal, B., Wu, W.," Trends in Satellite Communications

Technology, Techniques and Applications," International Journal of Satellite

Communications. Vo18, February, 1990, 283-294.

Smith, R., The Facts on File Dictionary of Artificial Intelligence, New York, NY,

Facts on File, 1989.

Stipp, L., Kowalski, B., "Object Processing for Knowledge-Based Systems," AI

Expert, October 1990, 34-41.

Waite, M., Prata, S, Martin, D., The Waite Group's C Primer Plus User-Friendly

Guide to the C Programming Language, Indianapolis, Indiana, Howard W. Sams

& Company, 1988.

Waterman, D., A Guide to Expert Systems, Reading, Pa, Addison-Wesly, 1986.

Windmiller, M., "Unique Bit-Error-Rate Measurement System for Satellite

Communication Systems," NASA Technical Paper 2699, Cleveland, Ohio, March,
1987.



52

APPENDIX



53

APPENDIX 1

MODIFYING GTEX

I. Required software:

Microsoft C version 5.1 - Microsoft Corporation

ART-IM version 2.1 - Inference Corporation

Essential Graphics Library 3.0 - South Mountain Software

DOS 3.3 or higher

Provided is a brief discripfion of the required procedures needed for making

modifications to the GTEX system. A strong background programming in 'C' is
recommended.

II. Modifying the knowledge base

Files required: *.ART"

1. These follow the procedures as outlined in the ART-IM manual for creating

rules, objects, ART-IM functions, etc.

2. The rule classification and categories discussed in this report should be used.

3. The GTEXD.EXE is the development environment used in debugging and

construction. This is the ART-IM development studio.

4. The contents of the files are loaded into the environment by typing (load "ld-

gtex.art") in the command window of GTEXD

5. The EMACS editor was used in creating these files. ART-IM provides a editor
within the studio that can also be used.



54

III. Creating a new screen

Files required: DPSCHEMA.ART

DSPDEF.C

DISPLAY.C

CNTLDEF.C

DSPDEF.H

1. Source code for all screens is located in DSPDEF.C.

2. To create a new display a new structure of the type Window needs to be

defined, the structure definition can be referenced in DISPLAY.H

3. Once the screen has been defined, the function 'aofnSetDisplay0' in
DISPLAY.C needs to be modifies to indicate the addition of the screen.

4. Next is to make a definition reference for the new display, this is completed by

appending a quoted string to the 'sMessageActions' array. This array is the

message that is sent by the knowledge base for that screen. A typedef array is

associated with each reference, 'msgact.' The two arrays must correspond or the

wrong screen will be displayed. The variable 'uNMesAct' needs to be updated

to indicate the number of messages.

5. Since the reference of the screen is located in another file, the DSPDEF.H is

used for making the external reference to the newly created display.

6. Since a new screen was created, the schema hierarchy must reflect this change.

The display schemas are located in DPSCHEMA.ART

7. If active areas are to be include, the file CNTLDEF.C has to be modified.

8. A button group of the available regions needs to be created. If, not active

regions are to appear then the button group is initialized to NULL.

9. Each button structure is used to define the active regions on the display. The

convention used was to overly buttons onto devices.

10. The DSPDEF.C file contains an array 'wnList' associates the displays with the

active region representation.

11. The files now need to be complied. This can be performed using the

procedure described in the Compilation section.



55

IV. Creating an update for a screen

Files required: DSPDEF.C

DISPLAY.C

DSPDEF.H

1. In the file DPSDEF.C an Update structure needs to be created, Update

structures are only used for devices. The Update structure is an array of device

position in the Window structure and the pointer to the new device to be

displayed.

2. The DSPDEF.H is used for declaring the external reference to the Update

structures defined.

3. The function 'aofnUpdate' in DISPLAY.C needs to be modified to indicate the

message the update will activate on. Arrays similar to the display arrays,

'sUpdateMessage' and 'UpdateMessage,' need to be modified. The variable

'NUPMESG' indicates the number of messages.

4. The files are compiled using the procedure are described in the Compilation
section.



56

V. Creating a new dialog

Files required: DGSCHEMA.ART

DISPLAY.C

DLGDEF.C

DLGDEF.H

1. To create a new dialog, modify the file DLGDEF.C.

2. A structure definition Dialog is used in creating a new dialog, The definition
can be found in DIALOG.H.

3. Several generic button groups have been defined, located at the top of the file
DLGDEF.C. This cuts down on the amount of code that is needed. These should

be used whenever possible.

3. After the dialog has been created the reference to this dialog is located in
DLGDEF.H

4. If the dialog is returning data then a dialog should be created as a dialog

message. An array exist in the DISPLAY.C file called 'sDialogActions' contains

the reference to the various dialogs. The array 'dgDialogActions,' is a

corresponing array with pointers to the various dialogs. NDLGACT indicates

the number of dialog messages.

5. If the dialog is just some kind of message, the dialog should be created as a

warning message. Similar arrays exists of the warning messages,

'sWarningActions,' 'dgWarningActions.' NWARN indicated the number of

warning messages.

6. The files are compiled using the procedure described below.

7. If the dialog is to retrieve a piece of data, then the corresponding

object:attribute pair in the dialog hierarchy needs as its value the name of the

dialog that was given as the message reference.



57

VI. Compilation

Files required: GTEX

GTEX.LNK

1. If the developer is unfamiliar with a MAKE procedure, it is used to ease the

compilation process.

2. The GTEX and GTEX.LNK files may require some modification to reflect to
location of the :

C compiler and libraries
ART-IM libraries

Essential Graphics libraries
GTEX source code

3. A new development environment can be created by entering MAKE GTEX
and the command line in DOS.



58

APPENDIX 2

FILE DESCRIPTIONS

File Name

GTEX.EXE
GTEX.MSG
SATDISH.PCC

SIM-1.DAT
SIM-2.DAT

Directory ART-SRC

ARTFUN.ART
DGSCHEMA.ART
DPSCHEMA.ART
GLOBAL.ART
GNSCHEMA.ART
INITIAL.ART
ISOLATE.ART
KBSCHEMA.ART
LD-GTEX.ART

MISC.ART
RECOMEND.ART
SOURCE.ART

USERFUN.ART

VERIFY.ART

Directory C-SRC

CNTLDEF.C

DISPLAY.C

DLGDEF.C

DSPDEF.C

Description

Main program

Database of messages

Bit file of satellite picture on
introduction screen

Simulator data file - Scenario 1

Simulator data file - Scenario 2

ART-IM function definitions

Dialog schema definitions

Display schema definitions
Global declarations

Generic schema definitions

Initialization rules

Isolation rules

Knowledge base schema definitions

Loads all files into development
environment

Miscellaneous rules

Recovery recommendation rules
Data Source rules

User function declarations

Verification rules

Active display region definitions

Display message definitions

Dialog definitions

Display screen definitions



File Name

Directory C-SRC continued

DSPUTIL.C

GEN_MES.C

GTEX.C

INITFUNS.C

INITLIBS.C

INITSIM.C

MSDIALOG.C

MSHANDLE.C

QUERY.C

SHADE.C

UTILITY.C

Directory Development

GEN MESS.XE

GTEXD.XE

MESSAGE.TX

Directory FONTS

BOCKLIN.SET

MISCREANT.FY

ROMAN25.FY

SBO.FY

Directory INCLUDE

COLOR.H

DIALOG.H

DISPLAY.H

DLGDEF.H

DSPDEF.H

FONTS.H

GTEX.H

INITFUNS.H

PCX.H

UTILITY.H

59

Description

Display utility functions

Database message generation function

Main program

ART-IM generated, user function
definitions

ART-IM generated
Simulator definition function

Dialog functions
Control functions

Query Subsystem functions

Shading definitions
Miscellaneous functions

Database message executable

Main development executable

ASCII text of messages

Bocklin font

Micro print font

Roman 25 font

SBO font

Color definitions

Dialog class definitions

Display class definitions

Reference to dialogs

Reference to displays

Font definitions

ART-IM definitions

ART-IM generated - user functions
PCX structure definition

Miscellaneous function definitions



60

File Name

Directory MAKE

GTEX

GTEX.LNK

Description

Make file for compilation

Link file for compilation


